(Solution Download) If X1 X2 Xn are independent


If X1, X2, . . . , Xn are independent and unbiased measurements of true values ?1, ?2, . . . , ?n , and U(X1, X2, . . . , Xn) is a nonlinear function of 1, X2, . . . , Xn , then in general U(X1, X2, . . . , Xn) is a biased estimate of the true value U(?1, ?2, . . . , ?n). A bias-corrected estimate is U(X1,

If X1, X2, . . . , Xn are independent
When air enters a compressor at pressure P1 and leaves at pressure P2, the intermediate pressure is given by P3 = ?P1P2. Assume that P1 = 8.1 ± 0.1 MPa and P2 = 15.4 ± 0.2 MPa.
a. Estimate P3, and find the uncertainty in the estimate, without bias correction.
b. Compute the bias-corrected estimate of P3.
c. Compare the difference between the bias-corrected and non-bias-corrected estimates to the uncertainty in the non-bias-corrected estimate. Is bias correction important in this case? Explain.

 







About this question:

Pay using PayPal (No PayPal account Required) or your credit card. All your purchases are securely protected by .
SiteLock